
Quiz	Section	Week	3
April	11,	2017

Today’s	goals
• Stats review:	p-values,	null	distributions,	and	significance	testing

• Command	line	tips	and	tricks

• Python:	Precedence,	For	loops	and	functions

P-values!
• P-values	tell	you	about	expectations	under	the	null	hypothesis
• they	say	nothing	about	the	alternative	hypothesis	or	how	probable	it	is

• Null	hypothesis:	usually	the	boring	default,	devil’s	advocate	position	– what	
you	want	to	see	if	you	can	disprove

P-values!
• P-values	tell	you	about	expectations	under	the	null	hypothesis
• they	say	nothing	about	the	alternative	hypothesis	or	how	probable	it	is

• Null	hypothesis:	usually	the	boring	default,	devil’s	advocate	position	– what	
you	want	to	see	if	you	can	disprove

There	is	no	difference between	treatment	groups
Life	expectancy	is	not	changing over	time
This	coin	is	not	weighted
These	two	sequences	are	unrelated

Historic	example:	R.A.	Fisher	and	the	tea-tasting	test

8	cups	of	tea,	randomly	chosen	to	either	have	tea	poured	
over	milk	or	milk	poured	over	tea

Null	hypothesis?
How	many	would	she	guess	
correctly	if	she	were	picking	
randomly?

Null	distribution:	What	we	suppose	the	data	might	
look	like	if	the	null	hypothesis	is	true
• This	could	be	based	on	a	parameterized	probability	distribution

• E.g.	Poisson:	number	of	successes	in	x	tries	with	y%	probability	of	success

• Or	you	can	generate	an	empirical	null	based	on	your	real	data
• E.g.	Shuffle	the	labels	of	the	variable	you	want	to	test

• Defining	the	most	appropriate	null	distribution	is	a	relevant	and	tough	
problem	in	a	lot	of	computational	biology	research!

Multiple	testing	can	be	dangerous!
• http://fivethirtyeight.com/
features/you-cant-trust-
what-you-read-about-
nutrition/
• Nutrition	&	lifestyle	
questionnaires	from	54	
individuals

Multiple	testing	can	be	dangerous!
• http://fivethirtyeight.com/
features/you-cant-trust-
what-you-read-about-
nutrition/
• Nutrition	&	lifestyle	
questionnaires	from	54	
individuals

Multiple	testing	can	be	dangerous!
• http://fivethirtyeight.com/
features/you-cant-trust-
what-you-read-about-
nutrition/
• Nutrition	&	lifestyle	
questionnaires	from	54	
individuals

This	is	exactly	the	same	
as	testing	for	alignments	
between	thousands	of	
sequences

Bonferroni	correction:	just	raise	the	threshold	
depending	on	the	total	#	of	tests
• For	1000	tests:	Use	a	threshold	1000x	stricter
• Does	not	require	tests	to	have	a	particular	relationship	with	each	other	
• Ensures	that	the	probability	of	rejecting	a	true	null	hypothesis	is	still	less	than	your	
original	desired	p-value	threshold

• Suppose	they	did	1000	tests	for	this	study	
• (50	lifestyle	qs and	200	foods)

• What’s	the	corresponding	E-value	for	p=0.0001?

• FYI:	Sometimes	this	is	too	harsh,	and	false	discovery	rate	corrections	can	be	
more	useful

Programming

Note:	If	you	are	new	to	coding	and	still	spending	lots	of	time	on	lots	of	
small	errors	,	this	is	100%	normal!!	Keep	at	it	and	it	will	get	easier.

Useful	command	line	tools
• ls []=	list	files

• ls	–lh =	list	files	with	extra	detail
• cd []=	change	directory

• cd	.. =	change	to	the	parent	directory
• mkdir []=	make	a	new	directory
• rm []=	delete	files
• mv []=	move	a	file	to	a	different	name	or	
location
• cp []=	copy	a	file	
• pwd []=	print	the	current	directory
• head []=	print	first	lines	of	a	file,	tail []=	print	
last	lines	of	file
• cat []=	print	contents	of	a	file
• less []=	print	contents	of	a	file
• grep []	[]=	search	for	a	string	in	a	file

A	pretty	good	starter	reference:
https://developer.apple.com/library/conte
nt/documentation/OpenSource/Conceptua
l/ShellScripting/CommandLInePrimer/Com
mandLine.html

• up	arrow	=	previous	command	
history

• tab	=	autocomplete	file	name
• |	pipe	=	use	output	as	input	to	next	
command

• You	can	install	Python	modules	
from	the	command	line	using	pip

• Much	much	more…

Practice:	
• Navigate	to	wherever	you	saved	your	homework	1	python	script
• take	a	look	at	the	first	lines	of	it	using	“head”
• Use	grep	to	search	for	the	“%”	operator	
• then	rename	the	file	using	“mv”

Order	of	operations/precedence
• Same	rules	apply	as	for	mathematical	expressions	generally,	plus	some	
other	conventions
• Without	other	specifications,	evaluation	happens	left-to-right
What’s	the	value	of	each	expression?
2 ** 7 == 127 + 1
2 + 2 ** 7 == 128 + 1
2 + (2 ** 7 == 128)+1
2 == 2 or 3 == 2 == False
2 == 2 or 3 in [3,4] == False
(2 == 2 or 3 in [3,4]) == False
Reference:	https://docs.python.org/2/reference/expressions.html#operator-precedence

Order	of	operations/precedence
• Same	rules	apply	as	for	mathematical	expressions	generally,	plus	some	
other	conventions
• Without	other	specifications,	evaluation	happens	left-to-right
What’s	the	value	of	each	expression?
2 ** 7 == 127 + 1
2 + 2 ** 7 == 100
(2 + 2 ** 7 == 100)+1
2 == 2 or 3 == 2 == False
2 == 2 or 3 in [3,4] == False
(2 == 2 or 3 in [3,4]) == False
Reference:	https://docs.python.org/2/reference/expressions.html#operator-precedence

For loops let you repeatedly apply the same lines
of code to each element in a list

x = [1, 2, 3]
for i in x:

print i
print 'done!'

i takes	on	the	value	of	
each	element	in	the	list	
for	each	iteration	of	the	
code	inside	the	for	loop	
block

For loops let you repeatedly apply the same lines
of code to each element in a list

x = [1, 2, 3]
for i in x:

print i
print 'done!'

1
2
3
done!

i takes	on	the	value	of	
each	element	in	the	list	
for	each	iteration	of	the	
code	inside	the	for	loop	
block

For loops also work for strings!

x = 'actg'
for i in x:

print i
print 'done!'

a
c
t
g
done!

Compute the sum of the numbers in list x!

sum = 0
for v in x:

sum = sum + v
print 'The sum is:', sum

x = [1,2,4,5]

The sum is: 12

How about the product?

print 'The product is:', product

x = [1,2,4,5]

The product is: 40

How about the product?

product = 1
for v in x:

product = product * v
print 'The product is:', product

x = [1,2,4,5]

The product is: 40

Powerful strategy: Combining for loops
and if/else statements

Output	how	many	numbers	in	the	list	x	with	values	greater	
than	5

count = 0
for v in x:

if v > 5:
count = count + 1

print count

x = [12, 3, 4.4, 6]

Example:	reverse	complement
s = ‘ATCG’

reverse_complement = ‘’

for nuc in s:

Find the complement of the nucleotide

Add the complement to the beginning of new string

reverse_complement = nuc + reverse_complement

print reverse_complement

‘CGAT’

Example:	reverse	complement
s = ‘ATCG’

reverse_complement = ‘’

for nuc in s:

Find the complement of the nucleotide

if nuc == ‘A’:

nuc = ‘T’

elif nuc == ‘T’:

nuc = ‘A’

elif nuc == ‘C’:

nuc = ‘G’

elif nuc == ‘G’:

nuc = ‘C’

Add the complement to the beginning of new string

reverse_complement = nuc + reverse_complement

print reverse_complement

‘CGAT’

Functions are sub-programs that you can
call in one line

• Used	as	a	single	word	(no	spaces)	followed	by	“()”,	
where	the	input	to	the	function	goes	within	the	
parentheses

• The	function	will	run,	and	it	will	evaluate	to	the	output	
of	the	function

>>> x = [1, 2, 3]
>>> print len(x)
3

>>> print len(‘hello!’)

Functions are sub-programs that you can
call in one line
• Python	has	many	built-in	functions	(e.g.	len)
• Modules	contain	definitions	for	additional	functions
• Next	week	we	will	talk	about	defining	and	writing	your	

own	functions

Useful	list	functions
Initializing a sequence of integers
x = range(0,4)
print x

[0, 1, 2, 3]

Adding to the end of a list
x.append(‘four’)
print x

[0, 1, 2, 3, four]

Iterate	through	a	list	with	range()	and	indices

english = [‘zero’,’one’,’two’]
spanish = [‘cero’, ‘uno’, ‘dos’]

for i in range(0,len(english)):
print english[i], spanish[i]

Iterate	through	a	list	with	range()	and	indices

english = [‘zero’,’one’,’two’]
spanish = [‘cero’, ‘uno’, ‘dos’]

for i in range(0,len(english)):
print english[i], spanish[i]

zero cero
one uno
two dos

Useful	string	functions

>>> s = "GATTACA"

>>> s.find("ATT")

1

>>> s.count("T")

2

>>> s.lower()

'gattaca‘

>>> s+s

‘GATTACAGATTACA’

>>> s.upper()
'GATTACA'
>>> s.replace("G", "U")
'UATTACA'
>>> s.replace("C", "U")
'GATTAUA'
>>> s.replace("AT",
"**")
'G**TACA'

These	are	defined	to	manipulate	a	specific	string	variable,	so	we	use	the	.	to	reflect	that	
(more	on	this	later)

Extra	practice:	

https://interactivepython.org/runestone/static/thinkcspy/index.html
Sections	4	and	6

