
Quiz	Section	Week	4
April	18,	2017

Finish	Fitch	algorithm	practice
Dictionaries,	For	loops,	Functions

Fitch	algorithm:	What	are	we	doing?
• The	small	parsimony	problem
• Analyzing	a	single	tree
• Min	changes	required	(parsimony	score)
• Parsimonious	assignment	of	internal	node	traits

Fitch	algorithm	practice:	bottom-up	phase

GTCCT

GTACT

ACCCT

GGCTT

Goal:	Assign	possible	values	to	internal	nodes,	calculate	parsimony	score

Fitch	algorithm	practice:	bottom-up	phase

GTCCT

GTACT

ACCCT

GGCTT

G,	T,	A/C,	C,	TA/G,	C/G,	C,	C/T,	T

G,	C/G/T,	C,	C,	TRoot

Goal:	Assign	possible	values	to	internal	nodes,	calculate	parsimony	score

Fitch	algorithm	practice:	top-down	phase

GTCCT

GTACT

ACCCT

GGCTT

G,	T,	A/C,	C,	TA/G,	C/G,	C,	C/T,	T

G,	C/G/T,	C,	C,	TRoot

Goal:	Pick	a	single	consistent	set	of	values	for	internal	nodes
Intuition:	if	possible,	assign	same	state	as	parent

GCCCT

GCCCT GTCCT

Fitch	algorithm	practice:	top-down	phase

GTCCT

GTACT

ACCCT

GGCTT

G,	T,	A/C,	C,	TA/G,	C/G,	C,	C/T,	T

G,	C/G/T,	C,	C,	TRoot

Goal:	Pick	a	single	consistent	set	of	values	for	internal	nodes
Intuition:	if	possible,	assign	same	state	as	parent

GTCCT
GGCCT
GCCCT

GCCCT
GGCCT

GTCCT

Programming

What's	a	function?

Function:	reusable	pieces	of	code,	that	take	zero	or	more	arguments,	
perform	some	actions,	and	return	one	or	more	values

e.g the	function	len
• arguments:	a	string	or	list
• actions:	count	the	number	of	characters	or	elements
• return:	the	integer	length	of	the	string	or	list

How	about	the	function	range?

>>> len("AGCAGTTTT")
9

• arguments:
• actions:	
• return:

>>> range(1,4)
[1,2,3]

Methods	are	defined	functions	that	are	applied	to	
a	specific	variable	of	a	given	type

>>> s = "GATTACA"

>>> s.find("ATT")

1

>>> s.count("T")

2

>>> s.lower()

'gattaca‘

>>> s+s

‘GATTACAGATTACA’

>>> s.upper()
'GATTACA'
>>> s.replace("G", "U")
'UATTACA'
>>> s.replace("C", "U")
'GATTAUA'
>>> s.replace("AT",
"**")
'G**TACA'
>>> s = "GAT TAC CAT"
>>> s.split()
['GAT','TAC','CAT']

String	methods:	We	use	the	"."	to	be	able	to	access	and	apply	them	to	a	
particular	string

Another	data	type:	Dictionaries

• a	data	structure	that	consists	of	an	unordered	set	of key:	
value pairs
• think	of	as	word:	definition pairs!

https://docs.python.org/3/tutorial/datastructures.html

Q:	How	could	we	encode	the	entire	genetic	code?

Dictionaries:	How	could	we	encode	the	entire	
genetic	code?

https://docs.python.org/3/tutorial/datastructures.html

>>> genetic_code = {"ATG": "Start", "TGA": "Stop", "TAG":
"Stop"}

>>> genetic_code["TAA"] = "Stop"

>>> genetic_code.get("TGA")

'Stop'

>>> genetic_code["TGA"]

'Stop'

>>> genetic_code.get("sss") #nothing or 'None' if not defined

>>> genetic_code["sss"]

KeyError: 'ttt'

Some	useful	dictionary	methods
>>> genetic_code.items()
[('TAA', 'Stop'), ('TGA', 'Stop'), ('TAG', 'Stop'),
('ATG', 'Start')]
>>> genetic_code.keys()
['TAA', 'TGA', 'TAG', 'ATG']
>>> genetic_code.values()
['Stop', 'Stop', 'Stop', 'Start']

Another	use	of	dictionaries:	store	counts	of	
named	elements

sequence = "GACCCT"

nuc_counts = {'A': 0, 'C': 0, 'T':0, 'G': 0}

for nuc in sequence:

#Add to the count for the given nucleotide

Example:	Calculate	#	of	each	nucleotide	in	a	sequence	

Another	common	use	of	dictionaries:	store	
counts	of	named	elements

sequence = "GACCCT"

nuc_counts = {'A': 0, 'C': 0, 'T':0, 'G': 0}

for nuc in sequence:

nuc_counts[nuc] = nuc_counts[nuc] + 1

Calculate	#	of	each	nucleotide	in	a	sequence	

More	on	For	loops

all_codons = []

for nuc in "ACTG":

for nuc2 in "ACTG":

for nuc3 in "ACTG":

codon = nuc+nuc2+nuc3

all_codons.append(codon)

print all_codons

Output?	How	many	codons?

Example:	List	all	possible	codons

Breaking	out	of	a	for	loop	

print(all_codons)

genetic_code = {"ATG": "Start", "TGA": "Stop",
"TAG": "Stop"}

for codon in all_codons:

print(codon)

if genetic_code.get(codon) == 'Stop':

break

Print	codons	1	at	a	time	until	we	hit	any	stop	codon,	then	stop

While	loops:	another	option	when	you	don't	know	
how	many	repeats	you	need	to	do

counter = 0
aa = ''

while aa != 'Stop':
codon = all_codons[counter]
aa = genetic_code.get(codon)
print(aa)
counter = counter + 1

While	loops	can	go	wrong	easily

counter = 0
aa = ''
codon = all_codons[counter]

while aa != 'Stop':
aa = genetic_code.get(codon)
print(aa)
counter = counter + 1

Often,	inside	of	a	loop	we	want	to	apply	a	
function!

all_results = []
for element in data:

#Calculate something from each element in a dataset
result = do_something(element)
#Compile all the calculation results in a list
all_results.append(result)

Very	common	program	structure:

Writing	your	own	functions

def do_something(datapoint):
#Whatever your calculation is
result = datapoint*100
return result

output	returned

Why	write	our	own	functions?

• Avoid	repetition,	use	the	same	piece	of	code	in	different	ways

• Better	organized,	easier-to-understand	code
• harder	to	make	mistakes,	easier	to	find	them

Write	a	function	that	transcribes	DNA	
sequence	into	RNA	sequence
def transcribe(dna_sequence):

Write	a	function	that	transcribes	DNA	
sequence	into	RNA	sequence

def transcribe(dna_sequence):

rna_sequence = dna_sequence.replace('T','U')

return rna_sequence

Using	your	function
def transcribe(dna_sequence):

rna_sequence = dna_sequence.replace('T','U')

return rna_sequence

sequence = "ATTGCCT"

print(transcribe(sequence))

print(rna_sequence)

Using	your	function
def transcribe(dna_sequence):

rna_sequence = dna_sequence.replace('T','U')

return rna_sequence

sequence = "ATTGCCT"

print(transcribe(sequence))

print(rna_sequence)

