
Quiz	Section	Week	5
April	26,	2016

Review
Programming:	Matrices,	files,	more	on	

functions,	organizing	programs

Topics	(not	guaranteed	to	be	comprehensive!)
• Alignments

• Reasons	to	align	sequences
• Needleman-Wunsch algorithm
• Smith-Waterman	algorithm
• Effects	of	parameter	variation	(including	gap	penalties)
• Testing	for	statistical	significance	of	an	alignment

• Phylogenetic	trees
• Rooted	and	unrooted	topologies
• Defining	the	best	tree	with	UPGMA	and	Neighbor	Joining
• Concept	of	parsimony
• Fitch	algorithm:	quantifying	how	parsimonious	a	tree	is,	assigning	internal	states
• Finding	the	most	parsimonious	tree:	Hill	climbing	w/	Nearest-Neighbor	interchanges
• Bootstrapping	to	quantify	confidence	in	tree	partitions

• Clustering
• Defining	a	clustering	problem
• Hierarchical	clustering

• Impact	of	using	single/complete/average	linkage
• K-means:	Objective	and	algorithm

• General	computation	and	programming
• What	is	an	algorithm
• What	is	a	search	heuristic
• Conceptual	definitions	of	variable	and	function
• Algorithm	complexity	with	O(n)	notation
• Data	types	and	converting	between	them
• Program	flow	and	control	with	conditional	statements	and	loops

Phylogenetic	trees
UPGMA/Neighbor	Joining
• Define	the	best	tree:	based	on	distance	between	leaves
• Find	the	best	tree	using:	polynomial	time	algorithm	to	construct	the	
best	tree	from	a	distance	matrix

Parsimony	approach
• Define	the	best	tree: Minimum	#	of	mutations	required	to	traverse	
tree
• Find	the	best	tree: by	enumerating	all	trees	(exhaustive	search),	or	by	
heuristic	approach	like	Nearest-Neighbor	Interchange	Hill-Climbing

Tree	topologies

Are	these	the	same	tree?
A
B
C
D

B
A
C
D

B
A
D
C

Tree	topologies

Are	these	the	same	tree?

How	about	these?

A
B
C
D

B
A
C
D

B
A
D
C

Counting	tree	topologies

#	of	unrooted	topologies	=	3*5*7*…*(2N-5)
#	of	branches	=	2N-3

For	N	leaves

E.g.	an	unrooted	tree	with	6	nodes

B
A

C

D

E

F How	many	different	topologies?

Counting	tree	topologies

#	of	unrooted	topologies	=	3*5*7*…*(2N-5)
#	of	branches	=	2N-3

For	N	leaves

E.g.	an	unrooted	tree	with	6	nodes

B
A

C

D

E

F How	many	different	topologies?
3*5*7	=	105	

Counting	tree	topologies

#	of	unrooted	topologies	=	3*5*7*…*(2N-5)
#	of	branches	=	2N-3

For	N	leaves

E.g.	an	unrooted	tree	with	6	nodes

B
A

C

D

E

F How	many	different	topologies?
3*5*7	=	105	

How	many	branches?

Counting	tree	topologies

#	of	unrooted	topologies	=	3*5*7*…*(2N-5)
#	of	branches	=	2N-3

For	N	leaves

E.g.	an	unrooted	tree	with	6	nodes

B
A

C

D

E

F How	many	different	topologies?
3*5*7	=	105	

How	many	branches?
2N-3	=	9

Counting	tree	topologies

#	of	unrooted	topologies	=	3*5*7*…*(2N-5)
#	of	branches	=	2N-3

For	N	leaves

E.g.	an	unrooted	tree	with	6	nodes

B
A

C

D

E

F How	many	different	topologies?
3*5*7	=	105	

How	many	branches?
2N-3	=	9

The	root	could	be	placed	on	any	branch
E.g.	an	unrooted	tree	with	6	nodes

B
A

C

D

E

F
How	many	different	topologies?
3*5*7	=	105	

How	many	branches?
2N-3	=	9

B
A

C

D

E

F

The	root	could	be	placed	on	any	branch
E.g.	an	unrooted	tree	with	6	nodes

B
A

C

D

E

F
How	many	different	topologies?
3*5*7	=	105	

How	many	branches?
2N-3	=	9

B
A

C

D

E

F

E
D

F
C

A
BTotal	options	=	105*9

=	945

B

A

C

D

EFor	each	internal	branch
generate	two	variant	trees	
that	swap	the	
relationships	of	the	four	
outside	branches

Nearest	Neighbor	Interchange	trees

Nearest	Neighbor	Interchange	trees

B

A

C

D

E
For	each	internal	branch
generate	two	variant	trees	
that	swap	the	
relationships	of	the	four	
outside	branches

B

A

C

D

E

B
A

D

C
E

Nearest	Neighbor	Interchange	trees

B

A

C

D

E
For	each	internal	branch
generate	two	variant	trees	
that	swap	the	
relationships	of	the	four	
outside	branches

B

A

C

D

E

B
A

D

C
E

B
A

E

D
C

Nearest	Neighbor	Interchange	trees

B

A

C

D

E
For	each	internal	branch
generate	two	variant	trees	
that	swap	the	
relationships	of	the	four	
outside	branches

B

A

C

D

E

B
A

D

C
E

C

A

B

D

E

C

B

A

D

E

B
A

E

D
C

Nearest	Neighbor	interchange
keeps	you	from	stepping	too	far	in	hill-
climbing

Tree Negative
parsimony	Score

1 -12
2 -4
3 -5
4 -76
5 -52
6 -30

B

A

C

D

E

B

E

C

D

A

Clades	A	and	B	are	
very	closely	related

NNI	designation

Random	designation	
of	neighbors

Tree	position	on	surface

NN	Practice:	Draw	both	interchanges	from	
swapping	this	branch

B
A

C

D

E

F

NN	Practice:	Draw	both	interchanges	from	
swapping	this	branch

B
A

C

D

E

F
C
A

B

D

E

F

B
C

A

D

E

F

Fitch	algorithm	practice

E

D

F
C

A

B

Fitch	algorithm	practice:	bottom-up

E

D

F
C

A

BOr	/Blk
Or/Blk/Bl

Bl
Bl

Blk /	Bl

Fitch	algorithm	practice:	top-down

E

D

F
C

A

B
Blk

Bl
Bl

Bl

Bl

Hierarchical	clustering	with	complete	linkage	
example

A B C D
A 0 1 2 4
B 1 0 2 5
C 2 2 0 5
D 4 5 5 0

A	B	C	D
A,B C D

A,B 0 2 5
C 2 0 5
D 5 5 0

A,B,C D
A,B,C 0 5
D 5 0

0.5 1 2.5

Programming	note:	2D	matrices	in	Python
• List	of	lists!
• Each	row	is	a	different	list

matrix = [[0, 1, 2, 4], [1, 0, 2, 5], …]
print matrix[0][1]
1
print matrix[0]
[0, 1, 2, 4]

A B C D
A 0 1 2 4
B 1 0 2 5
C 2 2 0 5
D 4 5 5 0

Reminder:	“Big O”	notation	for	complexity
What	is	the	time	complexity	in	O()	to	compute	the	
sum	of	a	list?

x is a list of length N
sum = 0
for v in x:

sum = sum + v
print 'The sum is:', sum

O(N)Directly	proportional	to	#	of	items	in	list!

How	about	the	time	complexity	in	O()	to	
compute	the	sum	of	an	NxN matrix?

x is a list of N lists
each list has N elements
sum = 0
for row in x: # Do this N times

for v in row: # N times again
sum = sum + v

print 'The sum is:', sum
The answer is O(N2)

Given	a	list	of	2D	points,	compute	their	center
points = [[1,2], [3,4], [5,6], [7,8]]
center point is (mean_x, mean_y)
mean_x = 0.0
mean_y = 0.0
for i in range(0,len(points)):

mean_x += points[i][0]
mean_y += points[i][1]

center = (mean_x/len(points), mean_y/len(points))
print center
(4.0, 5.0)

Reading	data	from	a	file	in	Python

fin = open('qs5.txt', 'r') # ‘r’ stands for
‘read’
all_lines = []
for line in fin: # In a for loop, fin acts
like a list of strings

print line
all_lines.append(line)

fin.close() # Lets the computer know it can
free up resources used to read the file
print all_lines

Alternative	file-reading	structure

my_open_file = open(sys.argv[1])
s1 = my_open_file.readline().strip()
s2 = my_open_file.readline().strip()

Note:	if	in	a	different	directory,	have	to	supply	file	path,	e.g.:
python	myScript.py /Users/cecilia/genome373/dataFile.txt

Writing	data	to	a	file

fout = open('output.txt', 'w') # ‘w’
stands for ‘write)
fout.write('Hello! How')
fout.write(' are you?\nI'm fine.') #
‘\n’ starts a
new line
fout.close()

Useful	function:	Split	a	string	into	its	constituent	
words

s = 'Wherefore art thou Romeo?'

words = s.split()# Returns a list of substrings

print words

['Wherefore', 'art', 'thou', 'Romeo?']

split() can use any arbitrary string to split by

words = s.split('r')

print words

['Whe', 'efo', 'e a', 't thou Romeo?']

