
Quiz	Section	Week	6
May	2,	2017

Exams
More	on	functions

A	bit	more	on	input/output,	lists

K-means	termination	criteria
The	K-means	algorithm	finds	clusters	by	iteratively	optimizing	and	re-
calculating	clusters…when	to	stop?

• When	we've	found	a	good	solution

• When	it	becomes	clear	there	is	no	good	
solution

Clusters	don't	change
Centers	don't	move

Reach	an	arbitrary	max	#	of	
iterations

Remember:	A	programming	language	has	different	
elements	that	you	can	combine	in	infinite	ways

Variables	in	different	
flavors/structures

Functions	and	
Operators

Control	statements
• If/elif/else
• for
• while
• def
• return

Simple	data	types
• integer
• float	(numeric)
• character
• Boolean

Collection	data	types
• string	(list	of	

characters)
• list	of	integers
• dictionaries
• list	of	dictionaries
• etc

sum
len
and
...

Sometimes	more	than	1	option	for	how	to	
store	and	access	some	data

distances = {}

distances['A'] = {'B':1, 'C':2, 'D':4}

distances['B'] = {'A':1, 'C':2, 'D':5}

distances['C'] = {'A':2, 'B':2, 'D':5}

distances['D'] = {'A':4, 'B':5, 'C':5}

A B C D
A 0 1 2 4
B 1 0 2 5
C 2 2 0 5
D 4 5 5 0

distances =
[[0,1,2,4],[1,0,2,5],[2,2,0,5],[4,5,5,0]]

You	could	define	a	network	the	same	way!

network = {}
network[('A','B')] = 1
network[('A','C')] = 2
network[('A','D')] = 4
network[('B','D')] = 4
etc.

A
B

C

D

For	directed	networks?

Example:	print	the	pair	of	points	that	have	the	
minimum	distance	

minimum_distance = float('inf') #Infinity

closest_pair = [] #empty list

A B C D
A 0 1 2 4
B 1 0 2 5
C 2 2 0 5
D 4 5 5 0

Example:	print	the	pair	of	points	that	have	the	
minimum	distance	

minimum_distance = float('inf') #Infinity

closest_pair = [] #empty list

for x in distances:

for y in distances[x]:

if distances[x][y] < minimum_distance:

minimum_distance = distances[x][y]

closest_pair = [x,y]

print closest_pair, minimum_distance

A B C D
A 0 1 2 4
B 1 0 2 5
C 2 2 0 5
D 4 5 5 0

Programming	question

How	many	and	what	
for	loops	do	we	need	
to	check	each	item?	

What	condition	
should	we	check?

def my_intersection(list1, list2):

list_num = my_intersection([1,3,5,21],[5,4,19,21])
print list_num # should print [5,21]

list_mix =
my_intersection([1,"r","hello",7],[4,"hello"])
print list_mix # should print ["hello"]

If	it's	found	in	list2

Check	whether	every	
element	in	list1	is	also	
found	in	list2

Programming	question

How	many	and	what	
for	loops	do	we	need	
to	check	each	item?	

What	condition	
should	we	check?

def my_intersection(list1, list2):
new_list = []
for x in list1:

if x in list2:
new_list.append(x)

return new_list

list_num = my_intersection([1,3,5,21],[5,4,19,21])
print list_num # should print [5,21]

list_mix =
my_intersection([1,"r","hello",7],[4,"hello"])
print list_mix # should print ["hello"]

If	it's	found	in	list2

Check	whether	every	
element	in	list1	is	also	
found	in	list2

Reminder:	Anatomy	of	a	function

def my_intersection(list1, list2):
new_list = []
for x in list1:

if x in list2:
new_list.append(x)

return new_list

Definition	statement
0	or	more	arguments

Some	action

A	single	
return

Once	you've	defined	a	function,	you	can	use	it	
again	and	again	in	many	different	ways!

list_num =
my_intersection([1,3,5,21],[5,4,19,21])
print list_num # should print [5,21]

list_mix =
my_intersection([1,"r","hello",7],[4,"hello"])
print list_mix # should print ["hello"]

def average_distance(point1, point_list, euclidean):
#1) Calculate distance from point1 to each point in point list
sum_dists = 0
for j in range(len(point_list)):

if(euclidean):
#What goes here?

else:
#What goes here?

#2) Calculate the average of the resulting distances and
return this value

avg_dist = float(sum_dists)/len(point_list)
return avg_dist

You	can	use	a	function	in	another	function!	E.g.	
Homework	4

You	just	have	to	define	or	import	the	definition	of	a	function	before	you	can	use	it

def average_distance(point1, point_list, euclidean):
#1) Calculate distance from point1 to each point in point list
sum_dists = 0
for j in range(len(point_list)):

if(euclidean):
sum_dists = sum_dists + euclidean_distance(point1,

point_list[j])
else:

sum_dists = sum_dists + manhattan_distance(point1,
point_list[j])

#2) Calculate the average of the resulting distances and return this
value

avg_dist = float(sum_dists)/len(point_list)
return avg_dist

You	can	use	a	function	in	another	function!	E.g.	
Homework	4

You	just	have	to	define	or	import	the	definition	of	a	function	before	you	can	use	it

You	can	even	use	a	function	from	a	different	file!

#This line imports all function
#definitions from the file
#intersection_function.py
from intersection_function import *

list_num =
my_intersection([1,3,5,21],[5,4,19,21])
print list_num

list_mix =
my_intersection([1,"r","hello",7],[4,"hel
lo"])
print list_mix

intersection_function.py:
def my_intersection(list1,
list2):

new_list = []
for x in list1:
if x in list2:

new_list.append(x)
return new_list

calc_intersections.py:

You	can	provide	default	values	for	function	
arguments

def less_than(myList, num=4):
new_list = []
for x in myList:

if x < num:

new_list.append(x)
return new_list

>>> less_than([12,3,7]) # will use default value for num

>>> less_than([12,3,7], num = 8)
[3]

[3,7]

Scope	of	a	variable
• Variables	created	in	the	main	part	of	your	program	can	be	accessed	
anywhere	(global	scope)
• Variables	created	within	functions	are	only	accessible	within	that	
function	(local	scope)

Global	scope	(everything	in	
program	can	access)

my_function
variables	created	
here	can	only	be	
accessed	here

A	program

Scope	of	a	variable
new_list = [0,1,2]

def less_than(myList, num = 4):
new_list = []
for x in myList:

if x < num:
new_list.append(x)

return new_list

print new_list
anotherList = [3,7,12]
print less_than(anotherList)

Scope	of	a	variable
new_list = [0,1,2]

def less_than(myList, num = 4):
#new_list = []
for x in myList:

if x < num:
new_list.append(x)

return new_list

print new_list
anotherList = [3,7,12]
print less_than(anotherList)

Don't	do	this!!	You'll	
confuse	yourself

Define	all	your	functions	at	
the	beginning	of	your	
program	or	in	another	file

Example	program	structure	with	input/output

#import needed modules and functions
#

#Read in data from file

#Do a calculation

#Write output to file

python	analyze_sequence_pairs.py inputfile.txt outputfile.txt

In
pu

t
O
ut
pu

t
Se
tu
p

Example	program	structure	with	input/output

import sys
from qs6 import * #import the definition of calculate_jukes_cantor

fin = open(sys.argv[1],'r')
seqs = []
for line in fin:

seqs.append(line.rstrip()) # gets rid of \n at the end of the
line
print seqs
fin.close()

answer = calculate_jukes_cantor(seqs[0], seqs[1])
fout = open(sys.argv[2],'w')
fout.write(seqs[0] + ' ' + seqs[1] + ' ')
fout.write(str(answer) + '\n')
fout.close()

python	analyze_sequence_pairs.py inputfile.txt outputfile.txt

In
pu

t
O
ut
pu

t
Se
tu
p

Lists	(and	strings):	Some	helpful	ways	to	access	
and	modify
>>> my_list = [1,2,3]
>>> my_list.append(4)
>>> my_list.remove(4)
>>> my_list.pop()
>>> my_list.extend([4,5,6])
#compare with .append([4,5,6]
>>> my_list[2]
>>> my_list[2:4]
>>> my_list[1:]
>>> my_list[-1]
>>> my_list.sort() #Doesn't output anything!
>>> print my_list
>>> my_list.sort(reverse = True)
>>> print my_list

Exercise:	modify	the	Jukes-Cantor	program	to	instead	
calculate	and	write	to	a	file	the	#	of	times	a	start	codon	
occurs	in	each	sequence

def count_start_codons(seq):
num_starts = seq.count("ATG")
return num_starts

Use	this	function:

python count_starts.py sequences.txt output_file.txt

ATGGGGGATG 2
CAGTTATGCCT 1

output	file:

Reminder:	Tons	of	resources	online	for	extra	
programming	practice
• I	still	recommend	this	one:
• http://interactivepython.org/runestone/static/thinkcspy/index.html

• You	can	use	the	help()	function	to	learn	about	what	other	functions	
do:
>>> help(len)
>>> help(open)
>>> my_list = []
>>> help(my_list.append)

