
Quiz	Section	Week	7
May	9,	2017

HMM	calculations	by	hand
A	few	quick	Python	notes

Recursion
Random	numbers

Remember	Needleman-Wunsch:	determine	the	best	
“hidden”	evolutionary	relationship	between	two	sequences

Observed	sequence

“H
id
de

n”
	re

la
tio

ns
hi
p	

to
	2

nd
se
qu

en
ce

• Alignment	score	for	a	
position	is	a	function	of	a	
previous	alignment	score	
and	a	“transition”	score

• Find	the	path	through	the	
matrix	that	has	the	best	
score

Viterbi:	determine	the	likeliest	hidden	state	
sequence	for	an	observed	sequence

A A T T T A
A-rich 0.4 *0.8	=	?

T-rich 0.1

Observed	sequence

Hidden	
relationship	to	

states

• Likelihood	for	an	“alignment”	of	hidden	
state	to	observed	sequence	is	a	function	
of	likelihood	of previous	alignment and	
transition	&	emission	probability

• Find	the	path	through	this	matrix	that	
has	the	highest	probability

0.1

0.90.5*0.8=

0.5*0.2=

Dynamic	programming	to	find	the	best	path	
for	Needleman-Wunsch and	Viterbi

A A T T T A

A-rich 0.4 0.8	=.	288

T-rich 0.1

• “Align”	observed	sequence	to	state	sequence

πi

xj

F(i,j)	=	max
F(1,j-1)a(π1, πi)e(xj, πi)
F(2,j-1)a(π2, πi)e(xj, πi)

etc.

0.9

0.1

A A T T T A

A-rich 0.4 0.288

T-rich 0.1

• “Align”	observed	sequence	to	state	sequence

πi

xj

F(i,j)	=	max
F(1,j-1)a(π1, πi)e(xj, πi)
F(2,j-1)a(π2, πi)e(xj, πi)

etc.

Dynamic	programming	to	find	the	best	path	
for	Needleman-Wunsch	and	Viterbi

A A T T T A

A-rich 0.4 0.288 … … … .00001

T-rich 0.1 … … … … .0002

• “Align”	observed	sequence	to	state	sequence

πi

xj

F(i,j)	=	max
F(1,j-1)a(π1, πi)e(xj, πi)
F(2,j-1)a(π2, πi)e(xj, πi)

etc.

Dynamic	programming	to	find	the	best	path	
for	Needleman-Wunsch	and	Viterbi

A A T T T A

A-rich 0.4 .288 … … … .00001

T-rich 0.1 … … … … .0002

• “Align”	observed	sequence	to	state	sequence

πi

xj

F(i,j)	=	max
F(1,j-1)a(π1, πi)e(xj, πi)
F(2,j-1)a(π2, πi)e(xj, πi)

etc.

Dynamic	programming	to	find	the	best	path	
for	Needleman-Wunsch	and	Viterbi

For	forward-backward,	we	account	for	all	paths	
instead	of	just	the	best	path

• What’s	the	probability	that	the	T	
at	position	3	was	emitted	by	the	
T-rich	state?
• What’s	the	probability	that	any	
path	goes	through	the	T-rich	
state	at	the	third	position?
• Combine	all	paths	that	pass	
through	that	position/state	pair

A A T T T A

A-rich … ... … … … …

T-rich … … … … … …

k=3

i=T-rich

Programming

Reminder:	Tons	of	resources	online	for	extra	
programming	practice
• I	still	recommend	this	one:
• http://interactivepython.org/runestone/static/thinkcspy/index.html

• You	can	use	the	help()	function	to	learn	about	what	other	functions	
do,	what	arguments	they	need,	etc.:
>>> help(len)
>>> help(open)
>>> my_list = []
>>> help(my_list.append)

A	quick	note	on	some	useful	list	functions
>>> my_list = [3,1,2]
>>> my_list[2]
>>> my_list[2:4]
>>> my_list[1:]
>>> my_list[-1]

>>> my_list.append(4)
>>> my_list.remove(4)
>>> my_list.extend([4,5,6])
#compare with .append([4,5,6]
>>> my_list.sort()
>>> my_list.sort(reverse = True)
>>> my_list.pop()

0 1 2 3
3						1						2 4

0 1 2 3
1						2 3					4

Both!

Structuring	a	program,	keeping	your	code	organized
• Remember	last	week	we	talked	about	how	you	can	import	functions	
from	another	script

#This line imports all function
#definitions from the file
#intersection_function.py
from intersection_function import *

#This runs all the code in
intersection_function.py!

list_num =
my_intersection([1,3,5,21],[5,4,19,21])
print list_num

intersection_function.py:
def my_intersection(list1,
list2):

new_list = []
for x in list1:
if x in list2:

new_list.append(x)
return new_list

calc_intersections.py:

We	can	put	code	to	test	or	apply	defined	functions	in	
its	own	section

Recall	HW4
from __future__ import division

def euclidean_distance(point1, point2):
#Calculate and return Euclidean distance here
return(dist)

def manhattan_distance(point1, point2):
#Calculate and return Manhattan distance here
return sum_dist

if __name__ == "__main__":
#This will only run if we are running the script itself
point1 = [0,2,2,1] #A point in 4-dimensional space
point2 = [1,3,2,2] #Another 4-D point point3 = [4,3] #A 2-D point
pointlist = [[2,5],[0,2],[11,3]] #A list of 3 2-D points
dist1 = euclidean_distance(point1, point2)
dist2 = manhattan_distance(point3, pointlist[0])
print "Distance 1: %.3f , Distance 2: %.3f" % (dist1, dist2)

Recursion

• Doug	mentioned	on	Friday	that	the	Forward-Backward	
algorithm	is	a	recursive algorithm

•What	does	that	mean?

Here's	a	puzzle:	how	to	calculate	the	sum	of	a	
list	(of	any	length)	without	for	and	while	loops?

Hint:	One	way	to	show	this	mathematically	
sum	=	(0	+	(5	+	(3	+	(4	+	(8)))))

def sumList(list1):
#List sum calculation here

my_list = [0,5,3,4,8]

Recursively	calculating	the	sum	of	a	list
def sumList(list1):

if len(list1) > 1:

return list1[0] + listsum(list1[1:])

else:

return list1[0]

A	recursive algorithm	refers	to	itself	– it	calls	itself	iteratively	
until	reaching	a	base	case

In	what	order	does	our	sum_list function	actually	
run?

base	case

A	bad	computer	scientist	joke

What's	wrong	with	this	recursive	"algorithm"?

Write	a	recursive	function	to	calculate	a	
factorial

def factorial(num):
if ##something:

#recursion
else:

base case
return prod

Write	a	recursive	function	to	calculate	a	
factorial

def factorial(num):
if num > 1:

prod = num*factorial(num - 1)
else:

prod = num
return prod

In	what	way(s)	is	the	forward-backward	
algorithm	recursive?

We	build	on	all	the	forward-backward	
probabilities

𝑃 𝜋# = 𝑘 𝑥 = 	
𝑃(𝑥, 𝜋# = 𝑘)

𝑃(𝑥) =
𝑓,,# ∗ 𝑏,,#
𝑃(𝑥)

Generating	random	numbers	in	Python

What	are	some	situations	where	you’d	want	to	generate	
random	numbers?

In-class	examples?

• Generating	random	sequences	to	create	null	distribution	for	
sequence	alignment

• A	Markov	chain	that	changes	states	probabilistically	

random()	returns	a	uniformly	distributed	
random	value	between	0	and	1

0.2612

• How	can	you	convert	this	
into	a	random	coin	flip	with	
heads	or	tails?

import random
r = random.random()
print r
0.261256363123

random()	returns	a	uniformly	distributed	
random	value	from	[0,1)

• How	can	you	convert	this	into	a	
random	coin	flip	with	heads	or	
tails?

• Throw	a	dart,	call	heads	if	dart	
lands	between	0	and	0.5,	tails	if	
between	0.5	and	1

• How	can	you	convert	this	into	a	
random	coin	flip	with	heads	or	
tails?

• Throw	a	dart,	call	heads	if	dart	
lands	between	0	and	0.5,	tails	if	
between	0.5	and	1

Heads Tails

0.5

random()	returns	a	uniformly	distributed	
random	value	between	0	and	1

Exercise:	write	a	function	to	simulate	a	coin	
flip	using	random()
import random

return ‘heads’ or ‘tails’ with 50/50 odds

def coinflip():

Exercise:	write	a	function	to	simulate	a	coin	
flip	using	random()
import random

return heads or tails

def coinflip():

v = random()

if f > 0.5:

return ‘Tails’

else:

return ‘Heads’

random()	returns	a	uniformly	distributed	
random	value	between	0	and	1

• How	can	you	convert	this	into	a	
die	roll?

Heads Tails

0.5

Exercise:	write	a	function	to	simulate	a	die	roll	
using	random()
import random

return 1,2,3,4,5, or 6 with equal odds

def dieroll():

Randomly	shuffling	a	sequence	of	letters

How	would	you	generate	a	random	permutation	of	this	sequence?

ATCGTCCTTAAGGATTACCATTTGGCCTAGA

Randomly	shuffling	a	sequence	of	letters
How	would	you	generate	a	random	permutation	of	this	sequence?

ATCGTCCTTAAGGATTACCATTTGGCCTAGA

