
Quiz	Section	Week	9
May	23,	2017

A	couple	notes	on	homework,	machine	learning
High-throughput	sequencing	applications

Hash-based	alignment	in	Python



Quick	recap:	forward-backward

Forward	(RED):	.008	+	.018	=	.026	
Backward	(GREEN):	.04	+	.09	=	.13	
The	probability	that	the	GC	rich	state emitted	the	nucleotide	G in	the	observed	
sequence	is	.026*.13	=	.00338	

= 𝑓 𝑖 ∗ 𝑏(𝑖)



Reminder:	Functions	are	most	helpful	when	they	
are	modular and	reusable

def markov_step(transition_probs, 
current_state):

trans_prob = 

transition_probs[current_state]

prob_choice = 

random.random()

if prob_choice < 

trans_prob['A']:

return 'A'

else:

return 'T'

import sys

import random

def read_transitions(input_file):
transition_probs = {'A':{'A':{}, 

'T':{}}, 'T':{'A':{}, 'T':{}}}

fin = open(input_file,'r')

for line in fin:

probs = 

line.rstrip().split()

transition_probs[probs[0]][probs

[1]] = float(probs[2])

fin.close()

return transition_probs



Think	of	functions	as	tools	you	build	to	help	
yourself	out
if __name__ == "__main__":

input_file = sys.argv[1]

input_file = sys.argv[1]

trans_probs = read_transitions(input_file)

# trans_probs = {'A':{'A':0.8, 'T':0.2}, 'T':{'A':0.2, 'T':0.8}}

seq_len = int(sys.argv[2])

start = random.random()

if start < 0.5:

seq = 'A'

else:

seq = 'T'

for i in range(seq_len-1):

seq = seq + markov_step(trans_probs, seq[i])

print seq



Supervised	machine	learning:	another	way	to	
think	about	it

• Given	N	training	examples	(objects)
• {(x1,y1), (x2,y2),…,	(xN,yN)}

Features	and class	labels
• Machine	learning	algorithm	
finds	a	function	g: X	→	Y

• Decision	Tree
• HMM

• Parameters	of	g	are	trained	from	an	
“objective	function”

• Decision	tree:	branch	purity
• Maximum	likelihood

Mapping	
function	g

features Parameters
θ

Optimization
criterion

Decision	Tree Binary
variables	(but	
could	a	lot	of	

things)

How/when	to	
branch

Branch	purity

HMM Nucleotides	
(but could	be	
anything)

emission	and	
transition

probabilities

P(x|θ)

SVM Numbers hyperplane	
weights

Maximum-
margin

Linear	
Regression

? ? ?



Questions	for	evaluating	machine	learning	models
(tl;dr:	read	the	methods!	be	a	skeptic!)
• How	were	features	chosen?	Are	there	data	quality	concerns?

• Garbage	in,	garbage	out
• poorly	designed	experiments,	biased	data,	batch	effects

• Are	we	evaluating	on	training,	validation,	or	test	data?	How	were	the	datasets	
chosen?	Any	circularity?	

• Changing	model	choices	based	on	held-out	data
• Variant	effect	predictors	only	trained	on	clearly	benign	or	deleterious	variants

• Are	model	assumptions	valid?
• What	are	the	limits	of	the	training	and	testing	data?	How	generalizable	is	this	
model?

• Variant	effect	predictors	only	trained	and	tested	on	European	genetic	backgrounds
• Are	samples	balanced	between	positive	and	negative?	How	is	this	accounted	for?
• What	metrics	were	used	for	evaluation?	What	metrics	are	not	shown?	

• http://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_probability/bs704_probability4.html



100m	dash	Olympic	gold	medal	times	
(Tatem Nature 2004)



Questions	about	high-throughput	sequencing?



Sequencing	as	tool	for	biological	measurement

• RNA-Seq

• Chromosome	conformation	capture

• Metagenomics

• Many	many	others…



RNA-Seq:	reverse	transcribe	RNA	->	cDNA,	
sequence	and	count

• Computational/statistical	tasks?

• align	and	count	reads
• ID	splice	sites,	splice	variants
• get	normalized	gene	or	

transcript	abundances
• test	for	differential	

expression
• modeling	of	gene	expression



Chromosome	conformation	capture	(3C,	5C,	Hi-C)
• Computational/
statistical	tasks?

• Identify	ligation	sites	and	
count	interactions

• Model	physical	structure	
based	on	contact	map	
frequencies

• Test	statistically	for	
changes	in	conformation

• Relate	to	other	data	
types



Whole	metagenome	shotgun	sequencing

Computational/statistical	tasks?

• Align	reads	to	known	genes	and	species
• Assemble	genomes
• Quantify	normalized	abundances	of	species
• Look	for	genomic	strain	variation	within	a	species	(at	the	nucleotide	and	gene	levels)
• Look	for	evidence	of	horizontal	gene	transfer	events
• Quantify	growth	rate…?
• ...



Normalizing	data	generated	by	sequencing	assays	is	a	
surprisingly	hard	problem

Only	red	gene	is	
truly	differentially	
expressed	 account	for	gene	length!



What	is	hashing?

• A	hash	function maps	some	object	x to	
an	integer	i

• A	hash	function	allows	us	to	have	a	
hash	table,	which	is	like	a	list	that	
allows	indexing	by	arbitrary	objects	(a	
python	Dictionary!)

• We	can	compute	the	value	of	the	hash	
function	and	find	the	index	in	the	hash	
table	in	constant	time	– fast!!

hash(‘hello’)	→	3	

0 1 2 3
‘hello’

Hash	table	with	key	‘hello’



Hash	functions	aren’t	perfect

• There’s	no	practical	function	that	
can	map	every	object	in	the	universe	
to	a	unique	integer

• Multiple	keys	can	map	to	the	same	
index	in	the	hash	table

• Hash	table	implementations	have	to	
somehow	deal	with	“collisions” 0 1 2 3

‘hello’
‘goodbye’
123.456

hash(‘hello’)	→	3	

hash(123.456)	→	3	
hash(‘goodbye’)	→	3	



Hashing	Improves	Search
• A	hash	function assigns	a	unique	key	to	each	unique	
data	element	(DNA	sequence	in	our	case)

hash(“ATGCTG”) = key1
hash(“TTTCTG”) = key2
…

• Keys	encode	strings	in	a	short,	easily	comparable	
format	(e.g.	a	number)



Hashing	Improves	Search
• A	hash	function assigns	a	unique	key	to	each	unique	
data	element	(DNA	sequence	in	our	case)

• The	hash	table	is	an	associative	array	that	describes	
the	relationship	between	the	key	and	the	sequence	
and	its	genomic	loction

Key Hashed index Genomic location
“GCTAGC” Key1 Chr1 123412
… … …
“TTTAGC” KeyN Chr6 988472



Create	a	hash	table	that	maps	all	observed	4-mers	
to	its	position(s)	in	the	reference	genome	‘s’
reference = 
'ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCT'

k = 4 # size

h = {} # 'ACAA':[0], 'CCCC':[15,16]



Create	a	hash	table	that	maps	all	observed	4-mers	
to	its	position(s)	in	the	reference	genome	‘s’
reference = 
'ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCT'
k = 4 # size 
h = {} # 'ACAA':[0], 'CCCC':[15,16]
for i in range(0,len(reference)-k):

s = reference[i:(i+k)]
if s in h:

h[s].append(i)
else:

h[s] = [i]
print h



print h

{'CGGC': [19], 'ACAA': [0], 'GTCC': [13], 'GGCC': 
[20], 'AAGA': [2], 'TTGT': [11], 'ATTG': [10], 'CCGG': 
[18], 'AGAT': [3], 'GATG': [4], 'ATGC': [5], 'GCTC': 
[37], 'GCCA': [7], 'CAAG': [1], 'CCAT': [8], 'CCCC': 
[15, 16], 'TGCC': [6], 'GCCT': [21], 'CCCG': [17], 
'TGCT': [27, 30, 33, 36], 'CCTC': [22], 'CCTG': [25], 
'TGTC': [12], 'TCCT': [24], 'CATT': [9], 'GCTG': [28, 
31, 34], 'CTGC': [26, 29, 32, 35], 'CTCC': [23], 
'TCCC': [14]}



Is	this	really	faster	than	using	.index()?	
time.time()	measures	time!
import time

print time.time() # Prints the number of seconds that have 
passed since January 1st, 1970
1464055997.75

start_time = time.time()
# Set of commands for which we want to measure running time
for i in range(0,1000000):

do = 'nothing'
print time.time()-start_time # Now print out running time
0.372000217438



Given	a	list	of	reads,	find	where	in	the	reference	
genome	they	reside	and	print	how	long	it	takes
# Given h from before, fill the list

locations = []

# With the reads in list reads

reads = h.keys()*1000

# And print how long it takes



Given	a	list	of	reads,	find	where	in	the	reference	
genome	they	reside	and	print	how	long	it	takes
# Given h from before, fill the list
locations = []
# With the reads in list reads
reads = h.keys()*1000
# And print how long it takes
start = time.time()
for s in reads:

locations.append( h[s] )
print 'dictionary:', time.time()-start
dictionary: 0.00799989700317



How	does	it	compare	to	using	
reference.index()?
# Using .index(), fill

locations = []

# With the reads in list reads

reads = h.keys()*1000

# And print how long it takes



How	does	it	compare	to	using	
reference.index()?
# Using .index(), fill
locations = []
# With the reads in list reads
reads = h.keys()*1000
# And print how long it takes
start = time.time()
for s in reads:

locations.append( reference.index(s) )
print 'reference.index:', time.time()-start
.index: 0.0120000839233



Is	this	a	fair	comparison?	What’s	missing?



Is	this	a	fair	comparison?	What’s	missing?

h = {}
k = 6
start = time.time()
for i in range(0,len(reference)-k):

s = reference[i:(i+k)]
if s in h:

h[s].append(i)
else:

h[s] = [i]
print h
print 'constructing dictionary:', time.time()-start
constructing dictionary: 0.0440001487732



Is	this	a	fair	comparison?	What’s	missing?

constructing dictionary: 0.0440001487732

Using the dictionary: 0.00799989700317

Using reference.index: 0.0120000839233

Constructing the dictionary is expensive, but 
you only have to do it once, and you keep 
reaping the benefits




