Quiz Section Week 9
May 23, 2017

A couple notes on homework, machine learning
High-throughput sequencing applications

Hash-based alignment in Python
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Forward (RED): .008 + .018 =.026

Backward (GREEN): .04 + .09 = .13
The probability that the GC rich state emitted the nucleotide G in the observed

sequence is .026*.13 =.00338



Reminder: Functions are most helpful when they

are modular and reusable

import sys

import random

def read transitions(input file):
transition probs = {'A':{'A':{},
"TRe{ry, "TUe{TAY:{}, "T':{}}}
fin = open(input file, 'r')

for line in fin:

probs =
line.rstrip() .split ()
transition probs[probs[0]] [probs
[1]] = float (probs[2])

fin.close ()

return transition probs

def markov_step(transition probs,
current state):
trans prob =

transition probs[current state]

prob choice =
random. random ()
1f prob choice <
trans prob['A']:
return 'A'
else:

return 'T'



hink of functions as tools you build to help
yvourself out

1if name == " main

"W .

input file = sys.argv([l]
input file = sys.argv([l]

trans probs = read transitions (input file)
i trans probs = {'A':{'A':0.8, 'T':0.2}, 'T':{'A':0.2, 'T':0.8}}
seq len = int(sys.argv[2])
start = random.random ()
1f start < 0.5:
seq = 'A'
else:
seq = 'T'

for 1 in range(seq len-1):
seq = seq + markov step(trans probs, seqg[i])

print seq



Supervised machine learning: another way to
think about it
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Questions for evaluating machine learning models

(tl;dr: read the methods! be a skeptic!)

 How were features chosen? Are there data quality concerns?
* Garbage in, garbage out
* poorly designed experiments, biased data, batch effects

* Are we evaluating on training, validation, or test data? How were the datasets
chosen? Any circularity?

* Changing model choices based on held-out data
* Variant effect predictors only trained on clearly benign or deleterious variants

* Are model assumptions valid?

* What are the limits of the training and testing data? How generalizable is this
model?
* Variant effect predictors only trained and tested on European genetic backgrounds

* Are samples balanced between positive and negative? How is this accounted for?

e What metrics were used for evaluation? What metrics are not shown?
* http://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_probability/bs704_probability4.html



100m dash Olympic gold medal times

(Tatem Nature 2004)
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Questions about high-throughput sequencing?



Sequencing as tool for biological measurement

* RNA-Seq
* Chromosome conformation capture

* Metagenomics

* Many many others...



RNA-Seq: reverse transcribe RNA -> cDNA,
seguence and count
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Chromosome conformation capture (3C, 5C, Hi-C)
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Whole metagenome shotgun sequencing
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Computational/statistical tasks?

* Align reads to known genes and species

* Assemble genomes

* Quantify normalized abundances of species

* Look for genomic strain variation within a species (at the nucleotide and gene levels)
* Look for evidence of horizontal gene transfer events

e Quantify growth rate...?



Normalizing data generated by sequencing assays is a
surprisingly hard problem
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What is hashing?

* A hash function maps some object x to
an integer i

* A hash function allows us to have a
hash table, which is like a list that
allows indexing by arbitrary objects (a
python Dictionary!)

* We can compute the value of the hash
function and find the index in the hash
table in constant time — fast!!

hash(‘hello’) - 3

Hash table with key ‘hello’

‘hello’

Hﬁﬂj




Hash functions aren’t perfect

* There’s no practical function that
can map every object in the universe
to a unique integer

* Multiple keys can map to the same
index in the hash table

* Hash table implementations have to
somehow deal with “collisions”
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Hashing Improves Search

* A hash function assigns a unique key to each unique
data element (DNA sequence in our case)

hash (“ATGCTG")
hash (“TTTCTG")

keyl
key2

* Keys encode strings in a short, easily comparable
format (e.g. a number)



Hashing Improves Search

* A hash function assigns a unique key to each unique
data element (DNA sequence in our case)

* The hash table is an associative array that describes
the relationship between the key and the sequence
and its genomic loction

Key Hashed index
“GCTAGC” Key Chr1 123412



Create a hash table that maps all observed 4-mers
to its position(s) in the reference genome ‘s’
reference =
'"ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCT

k = 4 # size

h = {} # '"ACAA':[0], 'CCCC':[15,16]



Create a hash table that maps all observed 4-mers
to its position(s) in the reference genome ‘s’

reference =
'"ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCT !

k = 4 # size
h = {} # "ACAA':[0], 'CCCC':[1l5,16]
for 1 i1n range(0,len(reference) -k):
s = reference[1: (1+k) ]
1f s 1n h:
h[s] .append (1)
else:
his] = [1]
print h



print h

{'CGGC': [19], 'ACAA': [0], 'GTCC': [13], 'GGCC':
201, 'AAGA': [2], 'TTGT': [11], 'ATTG': [10], 'CCGG':
18], 'AGAT': [3], 'GATG': [4], 'ATGC': [5], 'GCTC':
'37], 'GCCA': [7], 'CAAG': [1], 'CCAT': [8], 'CCCC':
15, 16], 'TGCC': [6], 'GCCT': [21], 'CCCG': [17],
'"TGCT': [27, 30, 33, 36], 'CCTC': [22], 'CCTG': [25],
'"TGTC': [12], 'TCCT': [24], 'CATT': [9], 'GCTG': [28,
31, 34], 'CTGC': [26, 29, 32, 35], 'CTCC': [23],
'"TCCC': [14]}



s this really faster than using .index()?
time.time() measures time!

import time

print time.time () # Prints the number of seconds that have
passed since January 1%, 1970

1464055997.75

start time = time.time ()
# Set of commands for which we want to measure running time
for 1 1n range(0,1000000) :

do = 'nothing'
print time.time()-start time # Now print out running time
0.372000217438



Given a list of reads, find where in the reference
genome they reside and print how long it takes

# Given h from before, fill the list
locations = []

# With the reads in 1list reads

reads = h.keys () *1000

# And print how long it takes



Given a list of reads, find where in the reference
genome they reside and print how long it takes

# Given h from before, fill the list
locations = []
# With the reads in list reads
reads = h.keys () *1000
# And print how long it takes
start = time.time ()
for s 1n reads:
locations.append( hls] )
print 'dictionary:', time.time()-start
dictionary: 0.00799989700317



How does it compare to using
reference.index()?

# Using .index (), fill
locations = []

# With the reads in 1list reads
reads = h.keys () *1000

# And print how long it takes



How does it compare to using
reference.index()?

# Using .index (), fill
locations = []
# With the reads in list reads
reads = h.keys () *1000
# And print how long it takes
start = time.time ()
for s 1n reads:
locations.append( reference.index(s) )

print 'reference.index:', time.time ()-start
.1ndex: 0.0120000839233



s this a fair comparison? What’s missing?



s this a fair comparison? What’s missing?

h = {}
k = 0
start = time.time ()

for 1 1n range (0, len(reference) -k) :
s = reference[1: (1+k)]
1f s 1n h:
h[s] .append (1)

else:
his] = [1]
print h
print 'constructing dictionary:', time.time()-start

constructing dictionary: 0.0440001487732



s this a fair comparison? What’s missing?

constructing dictionary: 0.0440001487732
Using the dictionary: 0.00799989700317
Using reference.index: 0.0120000839233

Constructing the dictionary 1s expensive, but
you only have to do 1t once, and you keep
reaping the benefits






