Quiz Section Week 9
May 23, 2017

A couple notes on homework, machine learning
High-throughput sequencing applications

Hash-based alignment in Python

Quick recap: forward-backward P, = k)
P(m; = klz) = ’P(a:)
AT GC
rich | 0.1 | rich P(z,m = k) Z P(r|z)
@A:OA/‘AA:M @ iz
04 |6V—|T:0. . .
o1l 01 |04 = £(0) * b(i)
C: 0.1 C: 0.4
- G A
AT Rich (.5) S5*4=2 \\ / A .1*.4.;04
ich (. S5*%1=. N %1% 4= I
seien (s T \s .025*.19*%4:)00188 1

> g9*1=09

Forward (RED): .008 + .018 =.026

Backward (GREEN): .04 + .09 = .13
The probability that the GC rich state emitted the nucleotide G in the observed

sequence is .026*.13 =.00338

Reminder: Functions are most helpful when they

are modular and reusable

import sys

import random

def read transitions(input file):
transition probs = {'A':{'A':{},
"TRe{ry, "TUe{TAY:{}, "T':{}}}
fin = open(input file, 'r')

for line in fin:

probs =
line.rstrip() .split ()
transition probs[probs[0]] [probs
[1]] = float (probs[2])

fin.close ()

return transition probs

def markov_step(transition probs,
current state):
trans prob =

transition probs[current state]

prob choice =
random. random ()
1f prob choice <
trans prob['A']:
return 'A'
else:

return 'T'

hink of functions as tools you build to help
yvourself out

1if name == " main

"W .

input file = sys.argv([l]
input file = sys.argv([l]

trans probs = read transitions (input file)
i trans probs = {'A':{'A':0.8, 'T':0.2}, 'T':{'A':0.2, 'T':0.8}}
seq len = int(sys.argv[2])
start = random.random ()
1f start < 0.5:
seq = 'A'
else:
seq = 'T'

for 1 in range(seq len-1):
seq = seq + markov step(trans probs, seqg[i])

print seq

Supervised machine learning: another way to
think about it

T by b I I
* {(xl,yl), (eryz);---; (XN;VN)} function g e criterion

Features and class labels Decision Tree Binary How/when to Branch purity
. . . variables (but branch
* Machine learning algorithm could a lot of
finds a functiong: X =2 Y things)
e Decision Tree HMM Nucleotides emission and P(x|©)
e« HMM (but could be transition
. anything) probabilities

. Earamgters of g_are”tramed from an - ——— hyperplane Maximum-

objective function weights margin

* Decision tree: branch purity s ? 2 2

e Maximum likelihood Regression

Questions for evaluating machine learning models

(tl;dr: read the methods! be a skeptic!)

 How were features chosen? Are there data quality concerns?
* Garbage in, garbage out
* poorly designed experiments, biased data, batch effects

* Are we evaluating on training, validation, or test data? How were the datasets
chosen? Any circularity?

* Changing model choices based on held-out data
* Variant effect predictors only trained on clearly benign or deleterious variants

* Are model assumptions valid?

* What are the limits of the training and testing data? How generalizable is this
model?
* Variant effect predictors only trained and tested on European genetic backgrounds

* Are samples balanced between positive and negative? How is this accounted for?

e What metrics were used for evaluation? What metrics are not shown?
* http://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_probability/bs704_probability4.html

100m dash Olympic gold medal times

(Tatem Nature 2004)

- ¢5¢d
- 9E2¢
- 0¢ce
- ¥0ce
- 8812
-clle
-9G1e
-0vie
-vele
- 8012
- 2602
- 9202
- 0902
- vP0C
- 820¢
-¢loe
- 9661
- 0861
- Y961
- 861
- CE6 L
- 9161

(s) swn Bujuupy

0061

Year

Questions about high-throughput sequencing?

Sequencing as tool for biological measurement

* RNA-Seq
* Chromosome conformation capture

* Metagenomics

* Many many others...

RNA-Seq: reverse transcribe RNA -> cDNA,
seguence and count

AAAAAAAAA 1) PolyA+RNA captured . .«
TITTTTTTITITT®) * Computational/statistical tasks?

_—TTE TTE = ™= ™= 2)RNAfragmented and primed

* align and count reads
* |ID splice sites, splice variants

e mmmmmm s mmmm 3) First strand cDNA synthesized
 get normalized gene or
- 4) Second strand cDNA synthesized transcript abundances
| * test for differential
'11 ?p 5) 3’ ends adenylatedand 5’ ends repaired eXpreSSion

* modeling of gene expression

N\ M / 6)DNA sequencing adapters ligated

Barcode

v
Rdl

e/) Ligated fragments PCR amplified

lez Index

Chromosome conformation capture (3C, 5C, Hi-C)

Crosslink DNA Cut with Fill ends Ligate

restriction and mark
Hindlll enzyme with biotin
MGC'.I.‘T
'.I.".I.‘CGM /

pull down biotin

Purify and shear DNA;

Sequence using

paired-ends

i

|
n

* Computational/

statistical tasks?

|dentify ligation sites and
count interactions
Model physical structure
based on contact map
frequencies

Test statistically for
changes in conformation
Relate to other data

types

Whole metagenome shotgun sequencing

NAA @ ATCGATCGGAT
. - ~“ATCATCGCGA
e © - CATCATCGC

%C Des — TCGATCGATCG
@ ,-_,-\ ~ @ = TCGGCCATAAC
- CATCATCGCGA

CATCATCGCGA

Environmental Mixed Fragmentation

) NGS sequencin
microbes genomic DNA & library Prep. . 8

Computational/statistical tasks?

* Align reads to known genes and species

* Assemble genomes

* Quantify normalized abundances of species

* Look for genomic strain variation within a species (at the nucleotide and gene levels)
* Look for evidence of horizontal gene transfer events

e Quantify growth rate...?

Normalizing data generated by sequencing assays is a
surprisingly hard problem

raw counts size factor normalization
0

n
c
=
(@]
(&] -
(0] -

T

—

condition A condition B condition A condition B

Only red gene is
truly differentially
expressed

What is hashing?

* A hash function maps some object x to
an integer i

* A hash function allows us to have a
hash table, which is like a list that
allows indexing by arbitrary objects (a
python Dictionary!)

* We can compute the value of the hash
function and find the index in the hash
table in constant time — fast!!

hash(‘hello’) - 3

Hash table with key ‘hello’

‘hello’

Hﬁﬂj

Hash functions aren’t perfect

* There’s no practical function that
can map every object in the universe
to a unique integer

* Multiple keys can map to the same
index in the hash table

* Hash table implementations have to
somehow deal with “collisions”

hash(‘hel
hash(‘good

o') >3

oye’) > 3

hash(123.456) > 3

e

— |

‘hello’
‘soodbye’
123.456

A2

Hashing Improves Search

* A hash function assigns a unique key to each unique
data element (DNA sequence in our case)

hash (“ATGCTG")
hash (“TTTCTG")

keyl
key2

* Keys encode strings in a short, easily comparable
format (e.g. a number)

Hashing Improves Search

* A hash function assigns a unique key to each unique
data element (DNA sequence in our case)

* The hash table is an associative array that describes
the relationship between the key and the sequence
and its genomic loction

Key Hashed index
“GCTAGC” Key Chr1 123412

Create a hash table that maps all observed 4-mers
to its position(s) in the reference genome ‘s’
reference =
'"ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCT

k = 4 # size

h = {} # '"ACAA':[0], 'CCCC':[15,16]

Create a hash table that maps all observed 4-mers
to its position(s) in the reference genome ‘s’

reference =
'"ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCT !

k = 4 # size
h = {} # "ACAA':[0], 'CCCC':[1l5,16]
for 1 i1n range(0,len(reference) -k):
s = reference[1: (1+k)]
1f s 1n h:
h[s] .append (1)
else:
his] = [1]
print h

print h

{'CGGC': [19], 'ACAA': [0], 'GTCC': [13], 'GGCC':
201, 'AAGA': [2], 'TTGT': [11], 'ATTG': [10], 'CCGG':
18], 'AGAT': [3], 'GATG': [4], 'ATGC': [5], 'GCTC':
'37], 'GCCA': [7], 'CAAG': [1], 'CCAT': [8], 'CCCC':
15, 16], 'TGCC': [6], 'GCCT': [21], 'CCCG': [17],
'"TGCT': [27, 30, 33, 36], 'CCTC': [22], 'CCTG': [25],
'"TGTC': [12], 'TCCT': [24], 'CATT': [9], 'GCTG': [28,
31, 34], 'CTGC': [26, 29, 32, 35], 'CTCC': [23],
'"TCCC': [14]}

s this really faster than using .index()?
time.time() measures time!

import time

print time.time () # Prints the number of seconds that have
passed since January 1%, 1970

1464055997.75

start time = time.time ()
Set of commands for which we want to measure running time
for 1 1n range(0,1000000) :

do = 'nothing'
print time.time()-start time # Now print out running time
0.372000217438

Given a list of reads, find where in the reference
genome they reside and print how long it takes

Given h from before, fill the list
locations = []

With the reads in 1list reads

reads = h.keys () *1000

And print how long it takes

Given a list of reads, find where in the reference
genome they reside and print how long it takes

Given h from before, fill the list
locations = []
With the reads in list reads
reads = h.keys () *1000
And print how long it takes
start = time.time ()
for s 1n reads:
locations.append(hls])
print 'dictionary:', time.time()-start
dictionary: 0.00799989700317

How does it compare to using
reference.index()?

Using .index (), fill
locations = []

With the reads in 1list reads
reads = h.keys () *1000

And print how long it takes

How does it compare to using
reference.index()?

Using .index (), fill
locations = []
With the reads in list reads
reads = h.keys () *1000
And print how long it takes
start = time.time ()
for s 1n reads:
locations.append(reference.index(s))

print 'reference.index:', time.time ()-start
.1ndex: 0.0120000839233

s this a fair comparison? What’s missing?

s this a fair comparison? What’s missing?

h = {}
k = 0
start = time.time ()

for 1 1n range (0, len(reference) -k) :
s = reference[1: (1+k)]
1f s 1n h:
h[s] .append (1)

else:
his] = [1]
print h
print 'constructing dictionary:', time.time()-start

constructing dictionary: 0.0440001487732

s this a fair comparison? What’s missing?

constructing dictionary: 0.0440001487732
Using the dictionary: 0.00799989700317
Using reference.index: 0.0120000839233

Constructing the dictionary 1s expensive, but
you only have to do 1t once, and you keep
reaping the benefits

