Quiz Section Week 10
May 30, 2017

Numpy
Bash/command line refresher
Workshop prep
Python has a lot of useful modules

Big ones:

- numpy: "numerical python" - numerical analysis
- scipy: "scientific python" - stats
- pandas: "python data analysis" - organizing data
- scikit-learn: machine learning
- matplotlib: plotting
Numpy provides an a powerful data structure: arrays

import numpy as np
x = np.array([[1,3,4],[1,5,0]])
print x
print x.shape
print x.size
print x.ndim
print x[1,2]
y = np.zeros([4,3])
print y
z = np.ones([3,6])
rand = np.random.random([3,5])
y.fill(2)
print y

Must be all a single data type!! What happens if not? What if lists of lists are not all the same length?

https://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html
Many methods and functions to manipulate and do calculations on arrays

```python
x.tolist()
x.tofile('out.txt', sep = ' ')
new_x = np.loadtxt('out.txt')
x.transpose()
x.flatten()
x.reshape([6, 1])
np.count_nonzero(x)
x.put([1, 2], 200)
x.sort(axis = 0)
x.sort()
x.sum()
x.sum(0) # What do these do?
x.sum(1)
x.min(0)
x.max(1)
x.clip(0, 10)
x > x
x > y
x*x
np.dot(x, x.transpose())
np.dot(x, x)
np.dot(x, y)
```
Slicing and accessing array subsets

\[x[1,2] \]
\[x[0] \]
\[x[:,1] \]
\[x[x > 2] \]
\[x[x[0] > 2] \]
\[x[0][x[0] > 2] \]
\[x[0][-2] \]
\[x[0][-2:] \]
\[x[1:2,1] \]
\[x[1][[2,1]] \]
Numpy can be faster than standard lists

```python
xlist = [1, 3, 4, 5, 0]
x = np.array(xlist)

start = time.time()
print x.sum()
print (time.time() - start)

start2 = time.time()
sumlist = 0
for element in xlist:
    sumlist = sumlist + element

print sumlist
print (time.time() - start2)
```
Exercises

• Create a random vector of size 10 and replace the max value with 0
  ```python
  randmat = np.random.random(10)
  randmat[randmat.argmax()] = 0
  print(randmat)
  ```

• Find and print the element of each row of x that is closest to 2 (hint: look up the np.argmin() function)
  ```python
  x=np.array([[3,2],[4,7],[8,12],[2,100],[0,2],[1,3]])
  mins = np.argmin(abs(x-2), axis=1)
  print x[np.arange(0,len(mins)),mins]
  ```
What if we have data in multiple types?

- e.g. a bed file or sam file!

<table>
<thead>
<tr>
<th>r001</th>
<th>163</th>
<th>ref</th>
<th>7</th>
<th>30</th>
<th>8M4I4M1D3M</th>
<th>=</th>
<th>37</th>
<th>39</th>
<th>TTAGATAAAGAGGATACTG</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>r002</td>
<td>0</td>
<td>ref</td>
<td>9</td>
<td>30</td>
<td>1S2I6M1P1I1P1I4M2I</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>AAAAGATAAGGGATAAA</td>
<td>*</td>
</tr>
<tr>
<td>r003</td>
<td>0</td>
<td>ref</td>
<td>9</td>
<td>30</td>
<td>5H6M</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>AGCTAA</td>
<td>*</td>
</tr>
<tr>
<td>r004</td>
<td>0</td>
<td>ref</td>
<td>16</td>
<td>30</td>
<td>6M14N1I5M</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>ATAGCTCTCAGC</td>
<td>*</td>
</tr>
<tr>
<td>r003</td>
<td>16</td>
<td>ref</td>
<td>29</td>
<td>30</td>
<td>6H5M</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>TAGGC</td>
<td>*</td>
</tr>
<tr>
<td>r001</td>
<td>83</td>
<td>ref</td>
<td>37</td>
<td>30</td>
<td>9M</td>
<td>=</td>
<td>7</td>
<td>-39</td>
<td>CAGCGCCAT</td>
<td>*</td>
</tr>
</tbody>
</table>

Pandas! http://pandas.pydata.org
Command line refresher

Variables:

x="myfile.txt"

echo "some words!" > myfile.txt
cat myfile.txt
ls -lh myfile.txt
mkdir new_directory
mv myfile.txt new_directory
echo $x
echo $PATH
Studying for the final

Primarily 2nd half of course

Practice! Re-do problems from old homeworks, quiz sections

Practice explaining concepts in your own words

Questions?
Course Takeaways

• Bioinformatics is not magic: there are always assumptions, uncertainties, ambiguities

• Have an understanding of what is happening inside black boxes – it might not be as complicated as it seems initially

• Start small and be clear in your own analysis and programming
Before tomorrow: download and install Docker!

• A Docker container is basically a mini computer with its own operating system and programs that will run on any computer.

• Tomorrow you'll download a Docker container with some sequence analysis programs and data.

• Make sure you have ~5-8 GB of storage free on your computer.