A couple notes on homework, machine learning
High-throughput sequencing applications
Hash-based alignment in Python
Quick recap: forward-backward

\[P(\pi_i = k|x) = \frac{P(x, \pi_i = k)}{P(x)} \]

\[P(x, \pi_i = k) = \sum_{\pi_i = k} P(\pi|x) \]

\[= f(i) \times b(i) \]

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>G</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT Rich (0.5)</td>
<td>.5*.4 = .2</td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>GC Rich (0.5)</td>
<td>.5*.1 = .05</td>
<td>.2*.1*.4 = .008</td>
<td>.1*.4 = .04</td>
</tr>
</tbody>
</table>

Forward (RED): .008 + .018 = .026
Backward (GREEN): .04 + .09 = .13
The probability that the **GC rich state** emitted the **nucleotide G** in the observed sequence is .026*.13 = .00338
Reminder: Functions are most helpful when they are modular and reusable

```python
import sys
import random

def read_transitions(input_file):
    transition_probs = {'A': {'A': {}, 'T': {}}, 'T': {'A': {}, 'T': {}}}
    fin = open(input_file, 'r')
    for line in fin:
        probs = line.rstrip().split()
        transition_probs[probs[0]][probs[1]] = float(probs[2])
    fin.close()
    return transition_probs

def markov_step(transition_probs, current_state):
    trans_prob = transition_probs[current_state]
    prob_choice = random.random()
    if prob_choice < trans_prob['A']:
        return 'A'
    else:
        return 'T'
```
Think of functions as tools you build to help yourself out

```python
if __name__ == "__main__":
    input_file = sys.argv[1]
    input_file = sys.argv[1]
    trans_probs = read_transitions(input_file)
    # trans_probs = {'A': {'A': 0.8, 'T': 0.2}, 'T': {'A': 0.2, 'T': 0.8}}
    seq_len = int(sys.argv[2])
    start = random.random()
    if start < 0.5:
        seq = 'A'
    else:
        seq = 'T'
    for i in range(seq_len-1):
        seq = seq + markov_step(trans_probs, seq[i])
    print(seq)
```
Supervised machine learning: another way to think about it

- Given \(N \) training examples (objects)
 - \(\{(x_1,y_1), (x_2,y_2), \ldots, (x_N,y_N)\} \)

Features and class labels

- Machine learning algorithm finds a function \(g: X \rightarrow Y \)
 - Decision Tree
 - HMM

- Parameters of \(g \) are trained from an “objective function”
 - Decision tree: branch purity
 - Maximum likelihood

Table: Mapping function \(g \)

<table>
<thead>
<tr>
<th>Mapping function (g)</th>
<th>features</th>
<th>Parameters (\theta)</th>
<th>Optimization criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Tree</td>
<td>Binary variables (but could a lot of things)</td>
<td>How/when to branch</td>
<td>Branch purity</td>
</tr>
<tr>
<td>HMM</td>
<td>Nucleotides (but could be anything)</td>
<td>emission and transition probabilities</td>
<td>(P(x</td>
</tr>
<tr>
<td>SVM</td>
<td>Numbers</td>
<td>hyperplane weights</td>
<td>Maximum-margin</td>
</tr>
<tr>
<td>Linear Regression</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Questions for evaluating machine learning models

(tl;dr: read the methods! be a skeptic!)

• How were features chosen? Are there data quality concerns?
 • Garbage in, garbage out
 • poorly designed experiments, biased data, batch effects

• Are we evaluating on training, validation, or test data? How were the datasets chosen? Any circularity?
 • Changing model choices based on held-out data
 • Variant effect predictors only trained on clearly benign or deleterious variants

• Are model assumptions valid?

• What are the limits of the training and testing data? How generalizable is this model?
 • Variant effect predictors only trained and tested on European genetic backgrounds

• Are samples balanced between positive and negative? How is this accounted for?

• What metrics were used for evaluation? What metrics are not shown?
 • http://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_probability/bs704_probability4.html
100m dash Olympic gold medal times
(Tatem Nature 2004)
Questions about high-throughput sequencing?
Sequencing as tool for biological measurement

- RNA-Seq
- Chromosome conformation capture
- Metagenomics
- Many many others...
RNA-Seq: reverse transcribe RNA -> cDNA, sequence and count

- Computational/statistical tasks?
 - align and count reads
 - ID splice sites, splice variants
 - get normalized gene or transcript abundances
 - test for differential expression
 - modeling of gene expression
Chromosome conformation capture (3C, 5C, Hi-C)

- Computational/statistical tasks?
 - Identify ligation sites and count interactions
 - Model physical structure based on contact map frequencies
 - Test statistically for changes in conformation
 - Relate to other data types
Whole metagenome shotgun sequencing

Computational/statistical tasks?

- Align reads to known genes and species
- Assemble genomes
- Quantify normalized abundances of species
- Look for genomic strain variation within a species (at the nucleotide and gene levels)
- Look for evidence of horizontal gene transfer events
- Quantify growth rate...?
Normalizing data generated by sequencing assays is a surprisingly hard problem.

Only red gene is truly differentially expressed.
What is hashing?

- A hash function maps some object \(x \) to an integer \(i \)

- A hash function allows us to have a hash table, which is like a list that allows indexing by arbitrary objects (a python Dictionary!)

- We can compute the value of the hash function and find the index in the hash table in constant time – fast!!

\[
\text{hash('hello') } \rightarrow 3
\]

Hash table with key 'hello'
Hash functions aren’t perfect

• There’s no practical function that can map every object in the universe to a unique integer

• Multiple keys can map to the same index in the hash table

• Hash table implementations have to somehow deal with “collisions”

hash(‘hello’) → 3
hash(‘goodbye’) → 3
hash(123.456) → 3

‘hello’
‘goodbye’
123.456
Hashing Improves Search

• A **hash function** assigns a unique key to each unique data element (DNA sequence in our case)

\[
\text{hash(“ATGCTG”)} = \text{key1}
\]
\[
\text{hash(“TTTCTG”)} = \text{key2}
\]
...

• **Keys** encode strings in a short, easily comparable format (e.g. a number)
Hashing Improves Search

• A **hash function** assigns a unique key to each unique data element (DNA sequence in our case)

• The **hash table** is an associative array that describes the relationship between the key and the sequence and its genomic location

<table>
<thead>
<tr>
<th>Key</th>
<th>Hashed index</th>
<th>Genomic location</th>
</tr>
</thead>
<tbody>
<tr>
<td>“GCTAGC”</td>
<td>Key1</td>
<td>Chr1 123412</td>
</tr>
<tr>
<td>“TTTAGC”</td>
<td>KeyN</td>
<td>Chr6 988472</td>
</tr>
</tbody>
</table>

...
Create a hash table that maps all observed 4-mers to its position(s) in the reference genome ‘s’

reference = 'ACAAGATGCCATTTGTCGCCCGCGCTCCTGCTGCTGCTGCTCTCT'
k = 4 # size
h = {} # 'ACAA':[0], 'CCCC':[15,16]
Create a hash table that maps all observed 4-mers to its position(s) in the reference genome ‘s’

```python
reference = 'ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCT'
k = 4  # size
h = {}  # 'ACAA':[0], 'CCCC':[15,16]
for i in range(0,len(reference)-k):
    s = reference[i:(i+k)]
    if s in h:
        h[s].append(i)
    else:
        h[s] = [i]
print h
```
print h

{
 'CGGC': [19], 'ACAA': [0], 'GTCC': [13], 'GGCC': [20], 'AAGA': [2], 'TTGT': [11], 'ATTG': [10], 'CCGG': [18], 'AGAT': [3], 'GATG': [4], 'ATGC': [5], 'GCTC': [37], 'GCCA': [7], 'CAAG': [1], 'CCAT': [8], 'CCCC': [15, 16], 'TGCC': [6], 'GCCT': [21], 'CCCG': [17], 'TGCT': [27, 30, 33, 36], 'CCTC': [22], 'CCTG': [25], 'TGTC': [12], 'TCCT': [24], 'CATT': [9], 'GCTG': [28, 31, 34], 'CTGC': [26, 29, 32, 35], 'CTCC': [23], 'TCCC': [14]
}
Is this really faster than using `index()`?

time.time() measures time!

```python
import time

print time.time()  # Prints the number of seconds that have passed since January 1st, 1970
1464055997.75

start_time = time.time()  # Set of commands for which we want to measure running time
for i in range(0,1000000):
    do = 'nothing'
print time.time()-start_time  # Now print out running time
0.372000217438
```
Given a list of reads, find where in the reference genome they reside and print how long it takes

Given h from before, fill the list
locations = []

With the reads in list reads
reads = h.keys() * 1000

And print how long it takes
Given a list of reads, find where in the reference genome they reside and print how long it takes

Given h from before, fill the list
locations = []
With the reads in list reads
reads = h.keys()*1000
And print how long it takes
start = time.time()
for s in reads:
 locations.append(h[s])
print 'dictionary:', time.time()-start
dictionary: 0.00799989700317
How does it compare to using reference.index()?

Using .index(), fill
locations = []
With the reads in list reads
reads = h.keys() * 1000
And print how long it takes
How does it compare to using reference.index()?

Using .index(), fill
locations = []
With the reads in list reads
reads = h.keys() * 1000
And print how long it takes
start = time.time()
for s in reads:
 locations.append(reference.index(s))
print 'reference.index:', time.time() - start
.index: 0.0120000839233
Is this a fair comparison? What’s missing?
Is this a fair comparison? What’s missing?

```python
h = {}
k = 6
start = time.time()
for i in range(0, len(reference) - k):
    s = reference[i:(i+k)]
    if s in h:
        h[s].append(i)
    else:
        h[s] = [i]
print h
print 'constructing dictionary:', time.time()-start
constructing dictionary: 0.0440001487732
```
Is this a fair comparison? What’s missing?

constructing dictionary: 0.0440001487732
Using the dictionary: 0.00799989700317
Using reference.index: 0.0120000839233

Constructing the dictionary is expensive, but you only have to do it once, and you keep reaping the benefits